Year 11 to 12 Maths Transition Material

Most of these questions link to your GCSE work. However, some will require you to complete independent study in order to complete the work. Please reflect in green on the cover of each section after you complete it.

Feel free to email EBU (Emily.butzen@langleyacademy.org)
for support materials if needed.

NAME:	Date:	HOMEWO	RK: C1
After completing this chapter you should be able to 1 simplify expressions and collect like terms		Question 1	Obtained
apply the rules of indicesmultiply out brackets		2	
factorise expressions including quadraticsmanipulate surds.		3	
This chapter provides the foundations for many aspects of A level Mathematics. Factorising expressions will enable	of	4	
you to solve equations; it could help sketch the graph of function. A knowledge of indices is very important when		5	
differentiating and integrating. Surds are an important w of giving exact answers to problems and you will meet th again when solving quadratic equations.		6	
Alcohus and f		7	
Algebra and f	unctions	8	
What grade would you give this piece of work ?	A B C D E	9	
All questions should have been completed, however if	there were any you found challeng	10	
which of the following did you do? - discuss it with a colleague?	Yes / no	11	
post the question on the discussion board in first class?see a teacher to get extra help with the question?Other;	Yes / no Yes / no yes / no	12	
	questions	13	
Describe the self study work you did to support/ development	op your understanding of the work	14	
either in class or at home		15	
How long did you spend on self study?(in hours) 0-1	1-2 2-3 3+	Total/51	
What do you feel you have learnt from this work?	1-2 2-3 3+		
		А	41
What do you feel you need to practice more in this work?		В	36
		С	31
TEACHER'S COMMENTS: MARK/	'GRADE	D	26
		Е	20

U

$x^3 - 4x^2 + 3x.$	
	(3)

Factorise completely		
	$x^3 - 9x$.	(2)
		(3)

H 2 9 9 9 2 A 0 3 2 8

Leave blank (a) Write down the value of $16^{\frac{1}{2}}$. 3. (1) (b) Find the value of $16^{-\frac{3}{2}}$. **(2)**

N23490A 3 Turn over

Q1

(Total 3 marks)

		Lea
• (a) Write down the value of $8^{\frac{1}{3}}$.		
	(1)	
(b) Find the value of $8^{-\frac{7}{3}}$.		
	(2)	
		Q1

	Leave blank
5. (a) Find the value of $8^{\frac{4}{3}}$.	
(2) $15x^{\frac{4}{3}}$	
(b) Simplify $\frac{15x^{\frac{4}{3}}}{3x}$. (2)	
(Total 4 marks)	Q2

H 2 6 1 0 7 A 0 3 2 4

		L b
(a) Write down the value of $16^{\frac{1}{4}}$.		
	(1)	
(b) Simplify $(16x^{12})^{\frac{3}{4}}$.	(2)	
	(2)	
		Q2

		Le bl
7. (a) Write down the value of $125^{\frac{1}{3}}$.		
	(1)	
(b) Find the value of $125^{-\frac{2}{3}}$.	(2)	
	(2)	
		Q1
	(Total 3 marks)	

8. Given that $32\sqrt{2} = 2^a$, find the value of a .	Leave blank
6. Given that $32\sqrt{2} - 2$, find the value of a . (3)	
	Q2
(Total 3 marks)	

	(1)
(b) Express $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})}$ in the form $b+c\sqrt{5}$, where b and c are integers.	(5)

	Leav blan
Question 9 continued	
	Q5
(Total 6 marks)	

Leave

26	(2)
(b) Express $\frac{26}{4+\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b are integers.	
	(2)

Question 10 continued	Leave
	Q6
(Total 4 marks)	

12. Simplify $(3 + \sqrt{5})(3 - \sqrt{5})$.	(2)

Simplify	
$\frac{5-\sqrt{3}}{2+\sqrt{3}}$,	
giving your answer in the form $a + b\sqrt{3}$, where a and b are integers.	(4)
	(-)

		Le
14. Expand and simplify $(\sqrt{7} + 2)(\sqrt{7} - 2)$.	(2)	
	(Total 2 marks)	Q3

Simplify	
(a) $(3\sqrt{7})^2$	(1)
(b) $(8+\sqrt{5})(2-\sqrt{5})$	
	(3)

NAME:	Date:	HOMEWO	RK: C1
After completing this chapter you should be able 1 plot the graph of a quadratic function 2 solve a quadratic function using factorisation 3 complete the square of a quadratic function 4 solve a quadratic equation by using the quadratic formula 5 calculate the discriminant of a quadratic expression 6 sketch the graph of a quadratic function. The above techniques will enable you to solve many tyof equation and inequality. The ability to spot and solve a quadratic equation is extremely important in A level Mathematics. Cuadratic function What grade would you give this piece of work? All questions should have been completed, however if which of the following did you do?	pes e C D E there were any you found challenge	Question	
- discuss it with a colleague? - post the question on the discussion board in first class? - see a teacher to get extra help with the question? -Other; -Were there any questions you still found challenging? Describe the self study work you did to support/ devel either in class or at home How long did you spend on self study?(in hours) 0-1 What do you feel you have learnt from this work?	Yes / no Yes / no Yes / no yes / no questions op your understanding of the work 1-2 2-3 3+		
What do you feel you need to practice more in this work?		A B	39 34 29
TEACHER'S COMMENTS: MARK	'GRADE	D E	25

U

Leave	
11.111	

	$x^2 - 8x - 29 \equiv (x+a)^2 + b,$	
where a and b are co	nstants.	
(a) Find the value of	f a and the value of b .	(3)
(b) Hence, or otherw	vise, show that the roots of	
	$x^2 - 8x - 29 = 0$	
are $c \pm d\sqrt{5}$, whe	ere c and d are integers to be found.	(3)

Question 1 continued	

find the value of k .	(4)
	(4)

N23490A

	(4)
(b) For this value of p, solve the equation $x^2 + 2px + (3p + 4) = 0$.	
	(2)

restion 2 continued	
nestion 3 continued	

The constitute $2\sqrt{2}$ $2\sqrt{4}$ $+1\rangle = 0$ and -1 is a constant because -1 in the constant	
The equation $2x^2 - 3x - (k+1) = 0$, where k is a constant, has no real roots.	
Find the set of possible values of k .	
	(4)

(Total 4 marks)

Q5

The equation $x^2 + kx + (k+3) = 0$, where k is a constant, has di	
(a) Show that $k^2 - 4k - 12 > 0$.	(2)
(b) Find the set of possible values of <i>k</i> .	(4)

Question 5 continued	Leave blank
	Q7
(Total 6 marks)	Q7

The equation $x^2 + kx + 8 = k$ has no real solutions for x . (a) Show that k satisfies $k^2 + 4k - 32 < 0$. (b) Hence find the set of possible values of k .	(3)
has no real solutions for x . (a) Show that k satisfies $k^2 + 4k - 32 \le 0$.	
(a) Show that k satisfies $k^2 + 4k - 32 \le 0$.	
(b) Hence find the set of possible values of k .	
(b) Hence find the set of possible values of k.	(4)

Question 6 continued	Leave blank	
	Q8	
(Total 7 marks)		

Given that the equation $2qx^2 + qx - 1 = 0$, where q is a constant, has no real roots	,
(a) show that $q^2 + 8q < 0$.	(2)
	(2)
(b) Hence find the set of possible values of q .	(2)
	(3)

Question 7 continued	Leav blan
	-
	•
	_
	-
	-
	_
	_
	_
	00
	Q8

•	The equation $kx^2 + 4x + (5 - k) = 0$, where k is a constant, has 2 different real solutions for x.	S
	(a) Show that <i>k</i> satisfies	
	$k^2 - 5k + 4 > 0$.	,
	(3))
	(b) Hence find the set of possible values of k .	
	(4))
		-
		-
		-
		-
		-
		-
		-
		-
		-
		_
		_
		_
		_
		_
		_
		-
		-
		-
		-
		-
_		_
_		_
_		_

Question 8 continued	Leave blank
	Q7
(Total 7 marks)	

Find the value of p .	
ring the value of p.	(4)

Question 9 continued	Le bl
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	Q6
(Total 4 marks	

NAME:

Date:

HOMEWORK: C1

After completing this chapter you should be able to

- 1 solve simultaneous equations by elimination
- 2 solve simultaneous equations by substitution
- **3** solve linear and quadratic inequalities.

You will meet simultaneous equations on many occasions during the A level Mathematics course. In Core 1 you will use them to find where lines intersect. You will also use them to solve problems in sequences and series.

Ε

Question Obtained 1 2 3 4 5 6 7 Total/45

Equations and inequalities

All questions should have been completed, however if there were any you found challeng which of the following did you do?

- discuss it with a colleague?

- Yes / no
- post the question on the discussion board in first class?
- Yes / no
- see a teacher to get extra help with the question?

What grade would you give this piece of work?

Yes / no

-Other;_____

yes / no

Were there any questions you still found challenging?

questions_____

Describe the self study work you did to support/ develop your understanding of the wo either in class or at home				
How long did you spend on self study?(in hours) 0-1	1-2	2-3	3+	
What do you feel you have learnt from this work?				

Α	36
В	32
С	27
D	23
E	18

17

U

TEACHER'S COMMENTS:

MARK/GRADE_____

What do you feel you need to practice more in this work?

Find the set of values of x for which	
(a) $3(2x+1) > 5-2x$,	
(a) S(2x+1) = S(2x),	(2)
(b) $2x^2 - 7x + 3 > 0$,	(4)
	(4)
(c) both $3(2x + 1) > 5 - 2x$ and $2x^2 - 7x + 3 > 0$.	
	(2)
	_

	Le bl
uestion 1 continued	
(Total 8 marks)	Q6

$x^{2} - 7x - 18 > 0.$ (4)	Find the set of values of x for which		
	$x^2 - 7x - 18 > 0.$	(4)	
		(4)	
· ·			Q2
		(Total 4 marks)	

			Leave
3.	Find the set of values of x for which		Dialik
	(a) $4x - 3 > 7 - x$		
		(2)	
	(b) $2x^2 - 5x - 12 < 0$		
		(4)	
	(c) both $4x - 3 > 7 - x$ and $2x^2 - 5x - 12 < 0$	(4)	
		(1)	

Onestion 2 continued	bl
Question 3 continued	
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	_
	-
	_
	_
	_
	_
	-
	-
	-
	-
	-
	-
	-
	-
	Q 4

Solve the simultaneous equations	
x-2y=1,	
$x^2 + y^2 = 29.$	(0)
	(6)

	Lea bla
Question 4 continued	
	_
	_
	_
	-
	-
	_
	_
	_
	_
	-
	-
	-
	-
	_
	_
	_
	_
	-
	-
	-
	_
	_
	_
	_
	_
	_
	-
	Q5
(Total 6 marks	$\bar{\mathbf{j}}$

x + y = 2	
$x^2 + 2y = 12.$	
•	(6)

7 Turn over

N23490A

6.	Solve the simultaneous equations	S	
		y=x-2,	
		y=x-2, $y^2+x^2=10.$	
			(7)
			_

	Leav blanl
Question 6 continued	
	Q4

• (a) By eliminating y from the equations	
y = x - 4,	
$2x^2 - xy = 8,$	
show that	
$x^2 + 4x - 8 = 0.$	(2)
	(2)
(b) Hence, or otherwise, solve the simultaneous equations	
y = x - 4,	
$2x^2 - xy = 8,$	
giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers.	(=)
	(5)

Question 7 continued	Leav blan
	06
(Total 7 marks)	Q6

AME:	Date:	HOMEWOR	RK: C1
After completing this chapter you should be able to sketch cubic graphs 2 sketch the graph of the reciprocal function $y = \frac{k}{x}$ 3 find where curves intersect 4 understand how the transformations $f(x + a)$, $f(x) + f(ax)$ and $af(x)$ affect the graph of the curve $y = f(x)$. You will analyse graphs in greater detail when you start differentiation. It is worth remembering the techniques in this chapter, because they will provide further information about the shape of the function. Later on in the course you will be asked to sketch complex graphs which are imple transformations of a standard function. Sketching Cur What grade would you give this piece of work? All questions should have been completed, however if the sketch completed in the course of the function of the curve $f(x)$ and $f(x)$ and $f(x)$ are the sketch complex graphs which are simple transformations of a standard function.	ves B C D E		Obtained
which of the following did you do? discuss it with a colleague? post the question on the discussion board in first class? see a teacher to get extra help with the question? Other;	Yes / no	11 Total/70	
Were there any questions you still found challenging? questions you did to support/ developed the self study work you did to support/ developed there in class or at home How long did you spend on self study?(in hours) 0-1 1-1 What do you feel you have learnt from this work?			
		А	56
What do you feel you need to practice more in this work?		В	49
		С	42
	RADE	D	35
		E	28

27

1.

Figure 1 shows a sketch of the curve with equation y = f(x). The curve crosses the x-axis at the points (2, 0) and (4, 0). The minimum point on the curve is P(3, -2).

In separate diagrams sketch the curve with equation

(a)
$$y = -f(x)$$
, (3)

(b)
$$y = f(2x)$$
. (3)

On each diagram, give the coordinates of the points at which the curve crosses the x-axis, and the coordinates of the image of P under the given transformation.

N23490A 10

N23490A 11 **Turn over**

2.

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin O and through the point (6, 0). The maximum point on the curve is (3, 5).

On separate diagrams, sketch the curve with equation

(a)
$$y = 3f(x)$$
, (2)

(b)
$$y = f(x + 2)$$
. (3)

On each diagram, show clearly the coordinates of the maximum point and of each point at which the curve crosses the x-axis.

Question 2 continued	Leave blank

3. Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the points (0, 3) and (4, 0) and touches the x-axis at the point (1, 0).

On separate diagrams sketch the curve with equation

(a)
$$y = f(x+1)$$
, (3)

(b)
$$y = 2 f(x)$$
, (3)

(c)
$$y = f\left(\frac{1}{2}x\right)$$
.

On each diagram show clearly the coordinates of all the points where the curve meets the axes.

83

		Leave blank
Question 3 continued		
		Q6
	(Total 9 marks)	

Lagra
Leave
blowle
пинк

- **4.** On separate diagrams, sketch the graphs of
 - (a) $y = (x+3)^2$,

(3)

(b) $y = (x + 3)^2 + k$, where k is a positive constant.

(2)

Show on each sketch the coordinates of each point at which the graph meets the axes.

	Leave
Question 4 continued	
	Q3
(Total 5 marks)	

5. Given that

$$f(x) = \frac{1}{x} \quad , \quad x \neq 0,$$

(a) sketch the graph of y = f(x) + 3 and state the equations of the asymptotes.

(4)

(b) Find the coordinates of the point where y = f(x) + 3 crosses a coordinate axis.

(2)

	Leave
Question 5 continued	
	Q3
(Total 6 marks)	

6.

Figure 1

Figure 1 shows a sketch of the curve with equation $y = \frac{3}{x}$, $x \ne 0$.

- (a) On a separate diagram, sketch the curve with equation $y = \frac{3}{x+2}$, $x \ne -2$, showing the coordinates of any point at which the curve crosses a coordinate axis.

 (3)
- (b) Write down the equations of the asymptotes of the curve in part (a). (2)

Question 6 continued	Leav blan
	Q5
(Total 5 ma	

7.

Leave blank

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x). The curve crosses the x-axis at the points (1, 0) and (4, 0). The maximum point on the curve is (2, 5). In separate diagrams sketch the curves with the following equations.

On each diagram show clearly the coordinates of the maximum point and of each point at which the curve crosses the *x*-axis.

(a)
$$y = 2f(x)$$
, (3)

(b) y = f(-x). (3)

The maximum point on the curve with equation y = f(x + a) is on the y-axis.

(c) Write down the value of the constant a. (1)

Q6	Question 7 continued	Leave blank	
		Q 6	
	(Total 7 marks)		

8.

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the point (0, 7) and has a minimum point at (7, 0).

On separate diagrams, sketch the curve with equation

(a)
$$y = f(x) + 3$$
, (3)

(b)
$$y = f(2x)$$
. (2)

On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the *y*-axis.

4

- 9. The curve C has equation $y = \frac{3}{x}$ and the line l has equation y = 2x + 5.
 - (a) On the axes below, sketch the graphs of C and l, indicating clearly the coordinates of any intersections with the axes.

(3)

(b) Find the coordinates of the points of intersection of C and l.

(6)

Question 9 continued	Leav blan
	Q6
(Total 9 marks)	

10.

Leave blank

Figure 1

Figure 1 shows a sketch of the curve C with equation y = f(x). There is a maximum at (0, 0), a minimum at (2, -1) and C passes through (3, 0).

On separate diagrams sketch the curve with equation

(a)
$$y = f(x+3)$$
, (3)

(b)
$$y = f(-x)$$
. (3)

On each diagram show clearly the coordinates of the maximum point, the minimum point and any points of intersection with the *x*-axis.

Question 10 continued		blank
Question to continue		
		Q5
	(Total 6 marks)	

- 11. The point P(1, a) lies on the curve with equation $y = (x + 1)^2(2 x)$.
 - (a) Find the value of a.

(1)

(b) On the axes below sketch the curves with the following equations:

(i)
$$y = (x+1)^2(2-x)$$
,

(ii)
$$y = \frac{2}{x}$$
.

On your diagram show clearly the coordinates of any points at which the curves meet the axes.

(5)

(c) With reference to your diagram in part (b) state the number of real solutions to the equation

$$(x+1)^2(2-x) = \frac{2}{x}.$$

(1)

Question 11 continued	Leave blank
	Q8
(Total 7 marks)	

	Date:	HOMEWO	RK: C1
After completing this chapter you should be able to		Question	Obtained
1 understand the link between the equation of a line, and gradient and intercept	its	1	
2 calculate the gradient of a line joining a pair of points		2	
3 find the equation of a line in either the form $y = mx + c$ or alternatively $ax + by = c$		3	
4 find the equation of a line passing through a pair of poir	nts		
determine the point where a pair of straight lines interseknow and use the rule concerning perpendicular gradier		4	
Understanding this chapter will help you find the equation of a tangent and normal to a curve in Chapter 7.		5	
		6	
Coordinate ge	ometi	_	
Coordinate ge	ometi	_	
Coordinate gein the (x, y) pla	ometı ane	7	
Coordinate ge in the (x, y) plant what grade would you give this piece of work?	ometi ane	7 8	
in the (x, y) pla	ane B C D	7 8 9 E 10	
what grade would you give this piece of work? All questions should have been completed, however if the which of the following did you do? - discuss it with a colleague?	B C D ere were any you four	7 8 9 E 10 nd challeng	
what grade would you give this piece of work? All questions should have been completed, however if the which of the following did you do?	B C D ere were any you four	7 8 9 E 10 nd challeng	

MARK/GRADE_____

Describe the self study work you did to support/ develop your understanding of the work

How long did you spend on self study?(in hours) 0-1 1-2 2-3 3+

А	80
В	70
С	60
D	50
E	40
U	39

What do you feel you have learnt from this work?

What do you feel you need to practice more in this work?

either in class or at home

TEACHER'S COMMENTS:

Leave blank

1.

The points A(1, 7), B(20, 7) and C(p, q) form the vertices of a triangle ABC, as shown in Figure 2. The point D(8, 2) is the mid-point of AC.

C(p, q)

(a) Find the value of p and the value of q.

(2)

The line l, which passes through D and is perpendicular to AC, intersects AB at E.

(b) Find an equation for l, in the form ax + by + c = 0, where a, b and c are integers.

(5)

(c) Find the exact x-coordinate of E.

(2)

N23490A 14

nestion 1 continued	

N23490A 15 **Turn over**

2.	The line l_1 passes through the point $(9, -4)$ and has gradien $\frac{1}{3}$.	
	(a) Find an equation for l_1 in the form $ax + by + c = 0$, where a , b and c are integers. (3)	
	The line l_2 passes through the origin O and has gradient -2 . The lines l_1 and l_2 intersect at the point P .	
	(b) Calculate the coordinates of <i>P</i> . (4)	
	Given that l_1 crosses the y-axis at the point C ,	
	(c) calculate the exact area of $\triangle OCP$. (3)	
_		
_		
_		
_		
_		
_		
_		
_		
_		
_		

	Leave blank
Question 2 continued	
	Q8
(Total 10 marks)	
(Total To marks)	

(a) Show that the point $P(3, -1)$ lies on L .	
	(1)
(b) Find an equation of the line perpendicular to L , which passes the answer in the form $ax + by + c = 0$, where a , b and c are integer	nrough <i>P</i> . Give your rs.
	(4)

(a) Find an equation for l_1	in the form $y = mx + c$, where m and c are constants.
	(4
The line l_2 passes through the intersect at the point S .	the point $R(10, 0)$ and is perpendicular to l_1 . The lines l_1 and l_2
(b) Calculate the coordinate	es of S.
	(5
(c) Show that the length of	fRS is $3\sqrt{5}$
(e) Show that the length of	(2
(d) Hanga or athornica fi	nd the exact area of triangle PQR .
(u) Hence, or otherwise, in	ind the exact area of triangle IQK .
	(-

Question 4 continued		Leave blank
	Question 4 continued	

Question 4 continued		Leav blan
yuestion 4 continued		
		Q1
	(Total 15 marks)	

	the curve C has equation $y = x^2(x-6) + \frac{4}{x}$, $x > 0$ The points P and Q lie on C and have x-coordinates 1 and 2 respectively.	
(a) Show that the length of PQ is $\sqrt{170}$.	(4)
		(•)
(b) Show that the tangents to C at P and Q are parallel.	(5)
(
(c) Find an equation for the normal to C at P , giving your answer in the for $ax + by + c = 0$, where a , b and c are integers.	11111
		(4)
—		

Question 5 continued	Leave blank

Question 5 continued	l t

5. The line l_1 has equation $y = 3x + 2$ and the line l_2 has equation $3x + 2y - 8 = 0$.	
(a) Find the gradient of the line l_2 .	(2)
The point of intersection of l_1 and l_2 is P .	
(b) Find the coordinates of <i>P</i> .	(3)
The lines l_1 and l_2 cross the line $y = 1$ at the points A and B respectively.	
(c) Find the area of triangle <i>ABP</i> .	(4)

Question 6 continued	Leave blank

Question 6 continued		Leav blan
		Q1:
	(Total 9 marks)	

7. The point A (-6, 4) and the point B (8, -3) lie on the line L .	I
(a) Find an equation for L in the form $ax + by + c = 0$, where a, b and c are integers.	(4)
(b) Find the distance AB, giving your answer in the form $k\sqrt{5}$, where k is an integer.	(3)
	_
	_
	_
	_
	_
	Q
(Total 7 mar	

N 2 5 5 6 1 A 0 5 2 4

8.

Leave blank

Figure 2

The points Q(1, 3) and R(7, 0) lie on the line l_1 , as shown in Figure 2.

The length of QR is $a\sqrt{5}$.

(a) Find the value of a.

(3)

The line l_2 is perpendicular to l_1 , passes through Q and crosses the y-axis at the point P, as shown in Figure 2.

Find

(b) an equation for l_2 ,

(5)

(c) the coordinates of P,

(1)

(d) the area of ΔPQR .

(4)

Question 8 continued	Leave blank

Question 8 continued	b

Question 8 continued	Lea bla
	Q

Leave	
blank	

		Leav blank
9. The line l_1 passes through the point A (2, 5) and has gradient $-\frac{1}{2}$		
(a) Find an equation of l_1 , giving your answer in the form $y = mx + c$.	(3)	
The point B has coordinates (-2, 7).		
(b) Show that B lies on l_1 .	(1)	
(c) Find the length of AB, giving your answer in the form $k\sqrt{5}$, where k is an integer	er. (3)	
The point C lies on l_1 and has x -coordinate equal to p .		
The length of AC is 5 units.		
(d) Show that p satisfies $p^2 - 4p - 16 = 0.$	(4)	
	(4)	
	I	

Question 9 continued	Leave blank

Question 9 continued	Leave blank

Question 9 continued		Leave
e de la companya de l		
		Q1
	(Total 11 marks)	

10.

Figure 1

The points A and B have coordinates (6, 7) and (8, 2) respectively.

The line l passes through the point A and is perpendicular to the line AB, as shown in Figure 1.

(a) Find an equation for l in the form ax + by + c = 0, where a, b and c are integers.

(4)

Given that l intersects the y-axis at the point C, find

(b) the coordinates of C,

(2)

Leave blank

(c) the area of $\triangle OCB$, where O is the origin.

(2)

Question 10 continued	Leave

Question 10 continued	

Question 10 continued	

IAME:	Date: _				HOMEWOI	RK: C1
After completing this chapter you shou	ld be able to				Question	Obtained
generate a sequence from the <i>n</i> th term recurrence relationship	, or from a				1	
know how to find the <i>n</i> th term of an arisequence, U_n	ithmetic				2	
know how to find the sum to n terms of series, S_n	f an arithmetic				3	
solve problems on arithmetic series using formulae for U_n and S_n	g the				4	
know the meaning of the symbol Σ .					5	
	_				6	
Sequences	and	Se		25	7	
o delenines	351131				8	
What grade would you give this piece of work	? A B	С	D	E	9	
All questions should have been completed, which of the following did you do?	however if there we	ere any you	found	challeng	10	
discuss it with a colleague?post the question on the discussion board in		es / no es / no			11	
 see a teacher to get extra help with the ques Other; 		es / no es / no			12	
Were there any questions you still found chall	enging? question	ıs			13	
Describe the self study work you did to sup either in class or at home	port/ develop your	understand	ing of t	he work	14	
ettiei iii class of at florife					15	
How long did you spend on self study?(in hou	rs) 0-1 1-2 2	-3 3+			16	
What do you feel you have learnt from this we					Total/130	
					А	104
What do you feel you need to practice more in	n this work?			_	В	91
					С	78
TEACHER'S COMMENTS:	MARK/GRADE_				D	65
					E	52

U

1.	The sequence	of positive	numbers u_1 ,	u_2, u_3, \dots	is give	n by:
	-	-			_	•

$$u_{n+1} = (u_n - 3)^2, u_1 = 1.$$

(a) Find u_2 , u_3 and u_4 .

(3)

(b) Write down the value of u_{20} .

(1)

Q2

(Total 4 marks)

2.	A sequence a_1, a_2, a_3, \ldots is defined by
	$a_1 = 3$.

(a) Find the value of a_2 and the value of a_3 .

 $a_{n+1}=3a_n-5, \quad n\geqslant 1.$

(2)

(b) Calculate the value of $\sum_{r=1}^{5} a_r$.

(3)

· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

westion 2 continued	
uestion 2 continued	

Leave
blank

3.	A sequence	a_1, a_2, a_3, \dots	is defined by
----	------------	------------------------	---------------

$$a_1 = k$$
,

$$a_{n+1} = 3a_n + 5, \qquad n \geqslant 1,$$

where k is a positive integer.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 9k + 20$.

(2)

(c) (i) Find $\sum_{r=1}^{4} a_r$ in terms of k.

(ii) Show that	$\sum_{r=1}^{4} a_r$ is divisible by 10.
----------------	--

(4)

Question 3 continued	Leav blan
	-
	-
	-
	_
	-
	-
	-
	-
	-
	_
	_
	_
	-
	-
	-
	-
	_
	_
	_
	-
	-
	-
	-
	-
	_
	_
	-
	-
	-
	Q8

4.	A sequence is given by:	Leav blan
	$x_1 = 1$,	
	$x_{n+1} = x_n(p + x_n),$	
	where p is a constant $(p \neq 0)$.	
	(a) Find x_2 in terms of p .	
	(b) Show that $x_3 = 1 + 3p + 2p^2$.	
	(2) Show that $x_3 = 1 + 3p + 2p$.	
	Given that $x_3 = 1$,	
	(c) find the value of p , (3)	
	(d) write down the value of x_{2008} .	
	(2)	
_		

Question 4 continued	Leav blan
(Total 8 marks)	Q7

5.	A sequence x_1, x_2, x_3, \dots is defined by	Leav
٥.		
	$x_1 = 1$,	
	$x_{n+1} = ax_n - 3, n \geqslant 1,$	
	where a is a constant.	
	(a) Find an expression for x_2 in terms of a . (1)	
	(b) Show that $x_3 = a^2 - 3a - 3$.	
	(b) Show that $x_3 - u - 3u - 3$. (2)	
	Given that $x_3 = 7$,	
	(c) find the possible values of a. (3)	

Question 5 continued	Leave blank
	Q5
(Total 6 marks)	

A sequence a_1, a_2, a_3, \dots is defined by	
$a_1 = k$	
$a_{n+1} = 2a_n - 7, \qquad n \geqslant 1,$	
where k is a constant.	
(a) Write down an expression for a_2 in terms of k .	(1)
(b) Show that $a_3 = 4k - 21$.	(2)
Given that $\sum_{r=1}^{4} a_r = 43$,	
(c) find the value of k .	(4)

Question 6 continued	Le
	Q7
(Total 7 marks)	2

7.	The rth term of an arithmetic series is $(2r - 5)$.	
	(a) Write down the first three terms of this series.	(2)
	(b) State the value of the common difference.	(1)
	(c) Show that $\sum_{r=1}^{n} (2r-5) = n(n-4)$.	(3)
_		
_		

N23490A 8

estion 7 continued	

N23490A 9 **Turn over**

An arithmetic series has first term a and common difference d . (a) Prove that the sum of the first n terms of the series is $\frac{1}{2}n[2a+(n-1)d].$ (4) Sean repays a loan over a period of n months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the n th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000. (c) Form an equation in n , and show that your equation may be written as $n^2 - 150n + 5000 = 0.$ (3) (d) Solve the equation in part (c).	-	
 (a) Prove that the sum of the first n terms of the series is \$\frac{1}{2}n[2a+(n-1)d]\$. (4) Sean repays a loan over a period of n months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the nth month, where n > 21. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000. (c) Form an equation in n, and show that your equation may be written as \$n^2 - 150n + 5000 = 0\$. (3) (d) Solve the equation in part (c). (3) (e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible. 		An arithmetic series has first term a and common difference d .
$\frac{1}{2}n[2a+(n-1)d].$ (4) Sean repays a loan over a period of n months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the n th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000. (c) Form an equation in n , and show that your equation may be written as $n^2 - 150n + 5000 = 0.$ (3) (d) Solve the equation in part (c).		
Sean repays a loan over a period of <i>n</i> months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the <i>n</i> th month, where <i>n</i> > 21. (b) Find the amount Sean repays in the 21st month. (2) Over the <i>n</i> months, he repays a total of £5000. (c) Form an equation in <i>n</i> , and show that your equation may be written as $n^2 - 150n + 5000 = 0.$ (3) (d) Solve the equation in part (c).		
Sean repays a loan over a period of n months. His monthly repayments form an arithmetic sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the n th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000. (c) Form an equation in n , and show that your equation may be written as $n^2 - 150n + 5000 = 0.$ (3) (d) Solve the equation in part (c).		-
sequence. He repays £149 in the first month, £147 in the second month, £145 in the third month, and so on. He makes his final repayment in the n th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the n months, he repays a total of £5000. (c) Form an equation in n , and show that your equation may be written as $n^2 - 150n + 5000 = 0.$ (3) (d) Solve the equation in part (c). (3)		
so on. He makes his final repayment in the <i>n</i> th month, where $n > 21$. (b) Find the amount Sean repays in the 21st month. (2) Over the <i>n</i> months, he repays a total of £5000. (c) Form an equation in <i>n</i> , and show that your equation may be written as $n^2 - 150n + 5000 = 0.$ (d) Solve the equation in part (c). (3) (e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible		
Over the <i>n</i> months, he repays a total of £5000. (c) Form an equation in <i>n</i> , and show that your equation may be written as $n^2 - 150n + 5000 = 0.$ (3) (d) Solve the equation in part (c). (3) (e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible		
Over the n months, he repays a total of £5000. (c) Form an equation in n , and show that your equation may be written as $n^2 - 150n + 5000 = 0.$ (3) (d) Solve the equation in part (c). (3)		(b) Find the amount Sean repays in the 21st month.
 (c) Form an equation in n, and show that your equation may be written as n² - 150n + 5000 = 0. (d) Solve the equation in part (c). (a) (b) State, with a reason, which of the solutions to the equation in part (c) is not a sensible 		(2)
$n^2 - 150n + 5000 = 0.$ (d) Solve the equation in part (c). (3) (e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible		Over the n months, he repays a total of £5000.
 (d) Solve the equation in part (c). (a) (3) (b) State, with a reason, which of the solutions to the equation in part (c) is not a sensible 		(c) Form an equation in n , and show that your equation may be written as
(d) Solve the equation in part (c).(3)(e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible		$n^2 - 150n + 5000 = 0.$
(e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible		(3)
(e) State, with a reason, which of the solutions to the equation in part (c) is not a sensible		(d) Solve the equation in part (c).
		(3)
(1)		(1)
	_	
	_	

Question 8 continued	Leav blan
Question 8 continued	

		_
		_

	Leav blan
Question 8 continued	
(Total 13 marks)	Q

On Alice's 11th birthday she started to receive an annual allowance. The first annual owance was £500 and on each following birthday the allowance was increased by £200.
Show that, immediately after her 12th birthday, the total of the allowances that Alice had received was £1200.
(1)
Find the amount of Alice's annual allowance on her 18th birthday.
(2)
Find the total of the allowances that Alice had received up to and including her 18th birthday.
(3)
hen the total of the allowances that Alice had received reached £32 000 the allowance opped.
Find how old Alice was when she received her last allowance.
(7)

	Leave blank
Question 9 continued	
	Q7
(Total 13 marks)	

common difference d km.	n a km and		
He runs 9 km on the 11th day, and he runs a total of 77 km over the 11 day period.			
Find the value of a and the value of d .			
	(7)		

Question 10 continued	
uestion to continued	

Ann has some sticks that are all of the same length. She arranges them in squares and has made the following 3 rows of patterns: Row 1	. 1	
Row 2		
She notices that 4 sticks are required to make the single square in the first row, 7 sticks to make 2 squares in the second row and in the third row she needs 10 sticks to make 3 squares. (a) Find an expression, in terms of <i>n</i> , for the number of sticks required to make a similar arrangement of <i>n</i> squares in the <i>n</i> th row. (3) Ann continues to make squares following the same pattern. She makes 4 squares in the 4th row and so on until she has completed 10 rows. (b) Find the total number of sticks Ann uses in making these 10 rows. (3) Ann started with 1750 sticks. Given that Ann continues the pattern to complete <i>k</i> rows but does not have sufficient sticks to complete the (<i>k</i> + 1)th row, (c) show that <i>k</i> satisfies (3 <i>k</i> – 100)(<i>k</i> + 35) < 0. (4)	Row 1	0
She notices that 4 sticks are required to make the single square in the first row, 7 sticks to make 2 squares in the second row and in the third row she needs 10 sticks to make 3 squares. (a) Find an expression, in terms of <i>n</i> , for the number of sticks required to make a similar arrangement of <i>n</i> squares in the <i>n</i> th row. (3) Ann continues to make squares following the same pattern. She makes 4 squares in the 4th row and so on until she has completed 10 rows. (b) Find the total number of sticks Ann uses in making these 10 rows. (3) Ann started with 1750 sticks. Given that Ann continues the pattern to complete <i>k</i> rows but does not have sufficient sticks to complete the (<i>k</i> + 1)th row, (c) show that <i>k</i> satisfies (3 <i>k</i> – 100)(<i>k</i> + 35) < 0. (4) (d) Find the value of <i>k</i> .	Row 2	00
make 2 squares in the second row and in the third row she needs 10 sticks to make 3 squares. (a) Find an expression, in terms of <i>n</i> , for the number of sticks required to make a similar arrangement of <i>n</i> squares in the <i>n</i> th row. (3) Ann continues to make squares following the same pattern. She makes 4 squares in the 4th row and so on until she has completed 10 rows. (b) Find the total number of sticks Ann uses in making these 10 rows. (3) Ann started with 1750 sticks. Given that Ann continues the pattern to complete <i>k</i> rows but does not have sufficient sticks to complete the (<i>k</i> + 1)th row, (c) show that <i>k</i> satisfies (3 <i>k</i> – 100)(<i>k</i> + 35) < 0. (4) (d) Find the value of <i>k</i> .	Row 3	
Ann continues to make squares following the same pattern. She makes 4 squares in the 4th row and so on until she has completed 10 rows. (b) Find the total number of sticks Ann uses in making these 10 rows. (3) Ann started with 1750 sticks. Given that Ann continues the pattern to complete <i>k</i> rows but does not have sufficient sticks to complete the (<i>k</i> + 1)th row, (c) show that <i>k</i> satisfies (3 <i>k</i> – 100)(<i>k</i> + 35) < 0. (4) (d) Find the value of <i>k</i> .	make 2 sq	,
Ann continues to make squares following the same pattern. She makes 4 squares in the 4th row and so on until she has completed 10 rows. (b) Find the total number of sticks Ann uses in making these 10 rows. (3) Ann started with 1750 sticks. Given that Ann continues the pattern to complete <i>k</i> rows but does not have sufficient sticks to complete the (<i>k</i> + 1)th row, (c) show that <i>k</i> satisfies (3 <i>k</i> – 100)(<i>k</i> + 35) < 0. (4) (d) Find the value of <i>k</i> .		
 4th row and so on until she has completed 10 rows. (b) Find the total number of sticks Ann uses in making these 10 rows. (3) Ann started with 1750 sticks. Given that Ann continues the pattern to complete k rows but does not have sufficient sticks to complete the (k+1)th row, (c) show that k satisfies (3k-100)(k+35)<0. (d) Find the value of k. 		
Ann started with 1750 sticks. Given that Ann continues the pattern to complete k rows but does not have sufficient sticks to complete the (k+1)th row, (c) show that k satisfies (3k-100)(k+35) < 0. (4) (d) Find the value of k.		
Ann started with 1750 sticks. Given that Ann continues the pattern to complete k rows but does not have sufficient sticks to complete the $(k+1)$ th row, (c) show that k satisfies $(3k-100)(k+35) < 0$. (d) Find the value of k .	(b) Find t	_
but does not have sufficient sticks to complete the $(k+1)$ th row, (c) show that k satisfies $(3k-100)(k+35) < 0$. (d) Find the value of k .		(3)
(d) Find the value of k.		
(d) Find the value of k .	(c) show	that k satisfies $(3k-100)(k+35) < 0$.
		(4)
(2)	(d) Find t	he value of k .
		(2)

	Leav
	blan
Question 11 continued	

Question 11 continued	Leave blank
	Q9
(Total 12 marks)	

9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence. (a) Find the amount she saves in Week 200. (3) (b) Calculate her total savings over the complete 200 week period. (3)	A girl saves money over a period of 200 weeks. She saves 5p in Week 1	, 7p in Week 2.
(3) (b) Calculate her total savings over the complete 200 week period.	9p in Week 3, and so on until Week 200. Her weekly savings form	
(3) (b) Calculate her total savings over the complete 200 week period.	(a) Find the amount she saves in Week 200.	
		(3)
	(b) Calculate her total savings over the complete 200 week period.	
		(3)

Question 12 continued	Leave blank
	Q4
(Total 6 marks)	

		Leav blanl
13. The first term of an arithmetic sequence is 30 and the common difference is -1.5		
(a) Find the value of the 25th term.		
	(2)	
The r th term of the sequence is 0.		
(b) Find the value of r .	(2)	
The sum of the first n terms of the sequence is S		
The sum of the first n terms of the sequence is S_n .		
(c) Find the largest positive value of S_n .	(3)	
	(3)	

Question 13 continued	Leave blank

uestion 13 continued		

Question 13 continued		Lea blar
		Q1
	(Total 7 marks)	

run of 5 km on the first Saturday. Each Saturday she increases the length of her ruthe previous Saturday by 2 km.	ın from
(a) Show that on the 4th Saturday of training she runs 11 km.	(1)
(b) Find an expression, in terms of n , for the length of her training run on Saturday.	the <i>n</i> th
	(2)
(c) Show that the total distance she runs on Saturdays in n weeks of training is $n(n + 1)$	(3) km.
On the <i>n</i> th Saturday Sue runs 43 km.	
(d) Find the value of <i>n</i> .	
	(2)
(e) Find the total distance, in km, Sue runs on Saturdays in <i>n</i> weeks of training.	(2)

Question 14 continued	Leave

Question 14 continued	

Question 14 continued	Leave blank
	Q7
(Total 10 marks)	

15 The Continue of an existence is a small shape of the state of the s		Leave
15. The first term of an arithmetic series is a and the common difference is d .		
The 18th term of the series is 25 and the 21st term of the series is $32\frac{1}{2}$.		
(a) Use this information to write down two equations for a and d .	(2)	
(b) Show that $a = -17.5$ and find the value of d .	(2)	
The sum of the first n terms of the series is 2750.		
(c) Show that <i>n</i> is given by		
$n^2 - 15n = 55 \times 40.$		
	(4)	
(d) Hence find the value of n .	(3)	
		1

Question 15 continued	Leave blank

Question 15 continued	t

Question 15 continued	Leave blank
	Q9
(Total 11 marks)	

A 40-year building programme for new houses began in Oldtown in the year 19 and finished in 1990 (Year 40).	951 (Year 1)
The numbers of houses built each year form an arithmetic sequence with first common difference d .	term a and
Given that 2400 new houses were built in 1960 and 600 new houses were bufind	uilt in 1990,
(a) the value of d ,	(3)
(b) the value of a ,	(2)
(c) the total number of houses built in Oldtown over the 40-year period.	(3)

	Leave blank
Question 16 continued	
	Q5
(Total 8 marks)	

NAME:	Date:	HOMEWO	RK: C1
	After completing this chapter you should be able to	Question	Obtained
	estimate the gradient of a curve	1	
-	calculate the gradient function, $\frac{dy}{dx}$ for simple functions	2	
	calculate the gradient of a curve at any point find the equation of the tangent and normal to a	3	
	curve at a specified point	4	
	calculate the second differential $\frac{d^2y}{dx^2}$.	5	
		6	
Differe	ntiation	7	
What grade would you give this		8	
	completed, however if there were any you found challeng	9	
which of the following did you do - discuss it with a colleague?		10	
- post the question on the discus - see a teacher to get extra help	with the question? Yes / no	11	
-Other; Were there any questions you st		Total/51	
Describe the self study work you either in class or at home How long did you spend on self so what do you feel you have learn			
	t from this work:	<u> </u>	Γ
		А	41
What do you feel you need to pro	actice more in this work?	В	36
		С	31
TEACHER'S COMMENTS:	MARK/GRADE	D	26

Ε

U

20

19

Leave	
blank	

(i) Given that $y = 5x^3 + 7x + 3$, find	
(a) $\frac{dy}{dx}$, (b) $\frac{d^2y}{dx^2}$.	(3) (1)

N23490A 4

	١
Leave	
blank	

2.	Given that	$y = 6x - \frac{4}{x^2},$	$x \neq 0$

(a)	find	$\frac{\mathrm{d}y}{\mathrm{d}x}$
-----	------	-----------------------------------

(2)

Leave	
blank	

3.	Given that $y = 2x^2 - \frac{6}{x^3}$,	$x \neq 0$

(a) find
$$\frac{dy}{dx}$$
,

(2)

Q4

(Total 2 marks)

(a) $x^4 + 6\sqrt{x}$,	
(a) $x^2 + 6\sqrt{x}$,	(3)
(b) $\frac{(x+4)^2}{x}$.	
$\frac{x}{x}$	
	(4)

	Leave blank
Question 4 continued	
	Q5
(Total 7 marks)	

	-
Leave	
blank	

du	$y = 4x^3 - 1 + 2x^{T}_2, x > 0,$	
find $\frac{dy}{dx}$.		(4)
		_

	I	Leave blank
		oiaiik
6. Given that $y = 3x^2 + 4\sqrt{x}$, $x > 0$, find		
(a) $\frac{\mathrm{d}y}{\mathrm{d}x}$,		
$\mathrm{d}x$	(2)	
12		
(b) $\frac{d^2y}{dx^2}$,		
dx	(2)	

Leave	
blank	

(a) Write $\frac{2\sqrt{x+3}}{x}$ in the form $2x^p+3x^q$ where p and q are constants.	(2)
Given that $y = 5x - 7 + \frac{2\sqrt{x+3}}{x}$, $x > 0$,	
(b) find $\frac{dy}{dx}$, simplifying the coefficient of each term.	
a.	(4)

Question 7 continued	Leave blank	
	Q5	
(Total 6 marks)		

	$f(x) = 3x + x^3, x > 0.$	
(a) Differentiate to find f	$\mathcal{E}'(x)$.	
		(2)
Given that $f'(x) = 15$,		
(b) find the value of <i>x</i> .		
		(3)

Question 8 continued	Le
	Q4

9.	Given that $\frac{2x^2 - x^{\frac{3}{2}}}{\sqrt{x}}$	can be written in the form $2x^p - x^q$
----	--	---

(a) write down the value of p and the value of q.

(2)

Given that $y = 5x^4 - 3 + \frac{2x^2 - x^{\frac{3}{2}}}{\sqrt{x}}$, (b) find $\frac{dy}{dx}$, simplifying the coefficient of each term.

(4)

Question 9 continued	Leave blank
	Q6
(Total 6 marks)	

Given that $y = 2x^3 + \frac{3}{x^2}$, $x \neq 0$, find	
(a) $\frac{dy}{dx}$	(3)

		Leave blank
1.	$f(x) = \frac{\left(3 - 4\sqrt{x}\right)^2}{\sqrt{x}}, x > 0$	
	\sqrt{x} , $x > 0$	
(a)	Show that $f(x) = 9x^{-\frac{1}{2}} + Ax^{\frac{1}{2}} + B$, where A and B are constants to be found.	
	(3)	

	(*)
(b) Find $f'(x)$.	(3)
(c) Evaluate f'(9).	
(c) Evaluate 1 (3).	(2)

Question 11 continued	Leave blank

Question 11 continued	b

Question 11 continued	bla
	Q9

NAME:	Date:
IVAIVIE	Datc

After completing this chapter you should be able to

- 1 integrate simple functions
- 2 understand the symbol $\int dx$
- **3** find the constant of integration by substituting in a given point (x, y).

Question Obtained 1 2 3 4 5 6 7 8 9 10 11 12

13

14

Total/64

HOMEWORK: C1

Integration

What grade would you give this piece of work?

All questions should have been completed, however if there were any you found challeng which of the following did you do?

discuss it with a colleague?

Yes / no Yes / no

- post the question on the discussion board in first class?

Yes / no

see a teacher to get extra help with the question?Other;

yes / no

2-3

Were there any questions you still found challenging?

questions_____

Describe the self study work you did to support, either in class or at home	develop you	ur understanding o	of the work

How long did you spend on self study?(in hours) 0-1

What do you feel you have learnt from this work?

What do you feel you need to practice more in this work?

TEACHER'S COMMENTS: MARK/GRADE_____

В	45
С	38
D	32
E	26
U	25

Leave	
blank	

	Leav blank
1.	
$C = T \cdot \int \left(1 \cdot 2\pi / \pi - 1\right) d\pi$	
(i) Find $\int \left(1+3\sqrt{x}-\frac{1}{x^2}\right) dx$	4)
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

N23490A

Leave	
blank	

(3)

2.	Given that	y = 6x	$\frac{4}{x^2}$, $x \neq$	0,
----	------------	--------	----------------------------	----

(a)	find	$\int y \mathrm{d}x$	•				

	1
Leave	1
blank	1

3.	(a) Show that $\frac{(3-\sqrt{x})^2}{\sqrt{x}}$	can be written as $9x^{-\frac{1}{2}} - 6 + x^{\frac{1}{2}}$.
----	---	---

Given that $\frac{dy}{dx} = \frac{(3 - \sqrt{x})^2}{\sqrt{x}}$, x > 0, and that $y = \frac{7}{3}$ at x = 1,

(b)	find y	in	terms	of x .

(6)

(2)

	Leave blank
Question 3 continued	
Quantum o communication	
	Q7
(Total 8 marks)	

4.	Given that	$y = 2x^2$	$-\frac{6}{x^3}$,	$x \neq 0$
----	------------	------------	--------------------	------------

(a)	find	$\int y$	dx
(4)	IIIIu .	J y	an

(3)

Q4

(Total 3 marks)

5.	The curve with equation $y = f(x)$ passes through the point $(1, 6)$. Given that	L
•		
	$f'(x) = 3 + \frac{5x^2 + 2}{x^{\frac{1}{2}}}, x > 0,$	
	find $f(x)$ and simplify your answer.	
		(7)

	Leav
Question 5 continued	
	00
(Total 7 marks)	Q8

•		I l
6. Find $\int (6x^2 + 2 + x^{-\frac{1}{2}}) dx$, giving each term in its simplest form. (4)	
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		Q
	(Total 4 marks)	

found.	(2)
(b) Find $\int (4+3\sqrt{x})^2 dx$.	
(e) = J (· · · · · · · ·)	(3)

		Leav
		blanl
8. Given that $y = 3x^2 + 4\sqrt{x}$, $x > 0$, find		
·		
•		
(a) $\int y dx$.		
$(a) \mid y \cup x \mid$		
•	(3)	

Find $\int (3x^2 + 4x^5 - 7) dx$.	(4)

• Find $\int (2 + 5x^2) dx$.	(3)

(a) Show that $\frac{dy}{dx} = x^2 + 6 + 9x^{-2}$	
(a) Show that $\frac{dy}{dx} = x^2 + 6 + 9x^{-2}$.	(2)
The point $(3, 20)$ lies on C .	
(b) Find an equation for the curve C in the form $y = f(x)$.	(6)

Question 11 continued	Leave blank

euestion 11 continued		
		Q
	(Total 8 marks)	

Find $\int (12x^5 - 8x^3 + 3) dx$, giving each term in its simplest form.	(4)

A curve has equation $y = f(x)$ and passes through the point (4, 22).	
Given that	
$f'(x) = 3x^2 - 3x^{\frac{1}{2}} - 7,$	
use integration to find $f(x)$, giving each term in its simplest form.	
	(5)

Question 13 continued	Leav
	Q4
	24

Leave
blank

14.	Given that	$y = 2x^3 + \frac{3}{x^2},$	$x \neq 0$,	find
14.	Given that	$y = 2x^3 + \frac{1}{x^2},$	$x \neq 0$,	tın

(a) $\int y dx$, simplifying each term.	(3)